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Mutations of Ca2+-activated proteases (calpains) cause muscular dystrophies. Nevertheless, the specific role of calpains in Ca2+

signalling during the onset of dystrophies remains unclear. We investigated Ca2+ handling in skeletal cells from calpain 3-deficient
mice. [Ca2+]i responses to caffeine, a ryanodine receptor (RyR) agonist, were decreased in −/− myotubes and absent in −/−
myoblasts. The −/− myotubes displayed smaller amplitudes of the Ca2+ transients induced by cyclopiazonic acid in comparison
to wild type cells. Inhibition of L-type Ca2+ channels (LCC) suppressed the caffeine-induced [Ca2+]i responses in −/− myotubes.
Hence, the absence of calpain 3 modifies the sarcoplasmic reticulum (SR) Ca2+ release, by a decrease of the SR content, an impair-
ment of RyR signalling, and an increase of LCC activity. We propose that calpain 3-dependent proteolysis plays a role in activating
support proteins of intracellular Ca2+ signalling at a stage of cellular differentiation which is crucial for skeletal muscle regeneration.

Copyright © 2009 Govindan Dayanithi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Calpains are intracellular nonlysosomal cysteine proteases
whose functions are regulated by Ca2+ (see [1] for review).
These proteins indeed display one Ca2+-binding domain on
each of the large and small subunits [2]. The physiological

roles of the calpains are not yet fully understood but as
proteases, they may regulate important cellular functions.
In particular, ubiquitous calpains have been implicated in
a wide variety of processes including apoptosis, myogenic
differentiation, cellular division and fusion [1]. Calpains
have been shown to play regulatory roles in other cells,
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in which they can influence gene expression through
the cleavage of specific transcription factors, affecting cell
viability by controlling apoptosis, and modulating other
cell processes through the cleavage of specific kinases and
ion channels (reviewed by Carafoli and Molinari; [3]). It
was demonstrated that the absence of the skeletal muscle
specific calpain 3 (from the corresponding gene capn3)
causes limb girdle muscular dystrophy type 2A (LGMD2A)
[4], a disease that has been linked to a significant level
of apoptotic fibres [5]. To better understand the function
of calpain 3 and the pathophysiological mechanisms of
LGMD2A, an adequate model was generated by gene
targeting [6]. The pathological process due to calpain
3 deficiency is associated with alterations in membrane
permeability [6] suggesting the possible existence of a
perturbation in homeostasis, especially in the intracellu-
lar Ca2+ concentration ([Ca2+]i) during muscular dystro-
phy.

The identification from skeletal muscle of a 94 kDa
protein that possesses thiol-dependent proteolytic activity
specifically directed against the skeletal muscle ryanodine
receptor (RyR) has several implications for the pathogenesis
of LGMD2A [7]. In particular, it makes it possible that
the dysregulation of skeletal muscle functions is, at least in
part, a consequence of the lack of RyR regulation by calpain
3.

Indeed, RyR, also referred to as Ca2+-release channel,
is the key protein responsible for the extremely rapid
movement of Ca2+ (millions of ions per second) from the
internal stores named the sarcoplasmic reticulum (SR) to
the cytosol during the process of excitation-contraction
coupling. The latter is described by a plasma membrane
depolarisation coming from motor neurones and activating
dihydropyridine receptors or L-type Ca2+ channels (LCCs)
mechanically coupled to the skeletal RyR isoform 1. In
turn, Ca2+ release from RyR causes the contractile filaments
to slide along one another, thus triggering the twitch of
the muscle cell. Then Ca2+ has to be removed from the
cytosol by extrusion through the Na+/Ca2+ exchanger and
by reuptake into the SR by the sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase (SERCA) pump. Hence Ca2+ cycling
is a fine-tuned process that requires strong control of its
homeostasis.

To test the hypothesis of RyR modulation by calpain
3, we investigated the effect of caffeine, a potent activa-
tor of RyR, and cyclopiazonic acid (CPA), an inhibitor
of the SERCA pump, on [Ca2+]i, which controls the
excitation-contraction coupling in muscle. We measured
[Ca2+]i in primary cultures of normal and capn3-deficient
mice skeletal muscle cells by single cell fast fluorescence
microspectrofluorometry. In vivo, satellite cells are activated
into myoblasts, proliferate and fuse to form myotubes to
repair damaged muscle fibres. By comparing myoblasts
and myotubes in culture, we aimed to investigate the
different steps involved in the process of regeneration.
Our pharmacological approach enabled us to decipher the
mechanisms leading to an impairment of Ca2+ release in
skeletal muscle when calpain 3 is absent, as it might be the
case in LGMD2A patients.

2. Material and Methods

2.1. Generation of capn3-Deficient Mice. The production of
capn3 −/− mice was carried out according to the well
established procedure published in 2000 by Richard and
collaborators [6].

2.2. Primary Skeletal Muscle Cell Culture. Muscles were
excised from the upper and lower legs of adult mice, and
proliferating satellite cells were isolated from these muscles
by pronase digestion as previously described [8]. Cells were
seeded in gelatine-coated (0.5%) glass bottom culture dishes
(HBSt or GWSt-3522 series; 22 mm diameter, 0.17 mm
thickness; WillCo Wells BV- Amsterdam, Netherlands) at
2 × 103 cells per cm2 in Dulbecco’s Modified Eagle Medium
(DMEM) containing 20% foetal calf serum, and incubated
at 37◦C in 7.5% CO2. Cells were continuously grown in this
medium, which was replaced at day 3 and then every 4 days.
Proliferating satellite cells were kept in culture for up to 11
days.

2.3. Indirect Immunofluorescence. Indirect immunofluores-
cence was done as described by Martin et al. in 1997 [9] using
appropriate dilutions of primary and secondary fluorescent
antibodies. The samples were observed with a Leica TCS 4D
confocal microscope.

2.4. Dye Loading and Measurement of [Ca2+]i. Dye loading
and intracellular free calcium measurements ([Ca2+]i) were
performed as described [10–12]. The culture dishes were
rinsed and incubated with 2.5 μM fura-2-AM and 0.05% w/v
Pluronic F-127 (Molecular Probes, Inc USA) in Locke
Locke’s buffer (in mM): NaCl 140; KCl 5; MgCl2 1.2; CaCl2
2.2; glucose 10; HEPES-Tris 10; pH 7.25) at 34◦C for 45
min. Subsequently, loaded cells were rinsed with Locke’s
buffer, and fluorescence measurements were carried out in
buffers kept at 35–37◦C throughout the time course of the
experiment. Calcium-free medium (EGTA-buffer) contained
(mM): EGTA, 2; NaCl, 140; KCl, 5; glucose, 10; KCl, 5;
MgCl2, 1; and HEPES 10; pH 7.4. In this EGTA buffer,
free Ca2+ was adjusted to 100 nM (which corresponds to
the resting [Ca2+]i as determined by preliminary fura-2
measurements). [Ca2+]i levels in single cells were measured
using the FFP photometer system (Zeiss, Oberkochen,
Germany) based on an inverted microscope (Axiovert-100)
equipped with epifluorescence. Band pass filters (340/10
nm and 380/10 nm) were alternately positioned with a
filter wheel, and the cells were excited through an oil-
immersion objective (Zeiss-plan Neofluar ×100, 1.3 n.a).
With fluorescence values corrected for background and dark
current, [Ca2+]i was calculated from the ratio between 340
and 380 nm recordings. For the in vitro calibration of
[Ca2+]i measurements based on the procedure described
by Grynkiewicz et al. [13], we used Ca2+-EGTA buffer
containing (mM): NaCl 140; MgCl2 2; glucose 10; HEPES
10 at pH = 7.25 adjusted with Tris-HCl. Various standards
were used for system calibration as described previously
[13].
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2.5. Drugs. Unless otherwise stated, all chemicals were pur-
chased from Sigma-France. Concentrated stock DMSO solu-
tions of cyclopiazonic acid (CPA) and ryanodine (Alomone
Labs, Israel) were stored at −20◦C. Caffeine (Almone Labs,
Isreal) was dissolved directly in the working buffer at
appropriate concentrations. Test solutions were prepared
daily using aliquots from frozen stocks to obtain the working
concentrations.

2.6. Drug Application. The control and test solutions were
applied using a multiple capillary perfusion system (200 μm
inner diameter capillary tubing, flow rate 500 μl/min) placed
close to the cell tested (<0.5 mm). Each capillary was fed by a
reservoir 50 cm above the bath. Switching the opening from
one capillary to the next made complete solution changes.
After each application, the cells were washed with Locke’s
buffer. Preincubation with inhibitory substances was carried
out in a 500 μL bath containing the inhibitors diluted in
Locke’s buffer.

2.7. Data Analysis and Statistical Methods. The results are
expressed as mean ± S.D or means ± S.E.M. The number
of sample size (n) given is the number of cells tested with
the same protocol (control, test drug, recovery) for each
group. The figures (traces) show on-line measurements of
the [Ca2+]i levels before and after the application of test
substances, while bar diagrams and numerical data are given
as mean ± S.E.M. and represent the peak amplitude of
the [Ca2+]i increase. Depending on the data, the results
were analysed using ANOVA or Mann-Whitney Rank Sum
test. Unless otherwise stated, differences were considered
statistically significant if P < 0.05.

2.8. Western Blot. Muscle samples were homogenized in
200 mM sucrose, 0.4 mM CaCl2, 20 mM HEPES (pH 7.4),
200 μM phenylmethylsulfonylfluoride (PMSF), 1 mM diiso-
propylfluorophosphate (DFP). Protein samples were dena-
tured 30 min at room temperature and subjected to SDS-
PAGE on 4%–15% acrylamide gradient gels and electro-
transferred to Immobilon membranes for 3 hours at 0.8 A.
The membrane was blocked with 4% nonfat dry milk in PBS,
0.1% Tween 20 (PBS-T) for 30 minutes at room temperature
and then incubated overnight at 4◦C with a polyclonal rabbit
antibody against RyR diluted 1/10 000 [14]. After washing in
PBS-T, the membrane was incubated for 3 hours at room
temperature with antirabbit secondary antibodies (Jackson
ImmunoResearch Laboratories) coupled to horseradish per-
oxidase. Revelation was carried out with a chemiluminescent
reagent (Western lightning Chemiluminescence reagent plus,
Perkin Elmer). Band intensities were quantified using ImageJ
software (National Institutes of Health, Bethesda, MD, USA).

2.9. RT-PCR Analysis. Total RNA was extracted from mus-
cles by the Trizol method (Invitrogen) after pulverization
using a Fast Prep FP120 apparatus (Bio101). Residual DNA
was removed from the samples using the Free DNA kit
(Ambion). One μg of RNA was reverse-transcribed using
random hexamers according to the protocol “Superscript II

first strand synthesis system for RT-PCR” (Invitrogen). PCR
was carried out on 1/20 of the reaction with 0.2 μM of each
primer. Three primer pairs were designed for capn3 in order
to cover the regions of alternative splicing [4] as follows:

p94sys3: forward 5′-TTCACCAAATCCAACCAC-
CG-3′ and reverse 5′-ACTCCAAGAACCGTTCCA-
CT-3′;

p94sys5: forward 5′-AGACAAAGATGAGAAGGC-
CC-3′ and reverse 5′-GCCGATCCACAGAGATTG-
TA-3′;

p94sys6: forward 5′-GACAGAGCACACAGCAAC-
AA-3′ and reverse 5′-GTTGGCTGTTGAGATGGA-
AG-3′.

PCR products were separated by agarose gel elec-
trophoresis and stained with ethidium bromide. Band
intensities were quantified using ImageJ software (National
Institutes of Health, Bethesda, MD, USA).

2.10. Caspase 3 Activity. To determine and quantify caspase
3 function, we used the PhiPhiLux-G2D2 substrate kit
(OncoImmunin, Inc., MD, USA). Briefly, the substrate is
coupled to a fluorophore and when cleaved specifically by
caspase 3, the fluorescence can be detected, measured and
analysed (excitation and emission peaks are 552 and 580 nm,
resp.).

3. Results

3.1. Morphological and Molecular Characterisation of Living
Myoblasts and Myotubes. We first characterised the differ-
entiated states of the skeletal muscle primary cultures used
in this study by the expression of specific differentiation
markers. At day 6 of culture, mononuclear cells from both
wild type (Figure 1(a), left upper panel) and capn3-deficient
(not shown) mice were uniformly positive for myogenin
(Figure 1(a), left medium panel) and negative for MHC
(Figure 1(a), left lower panel) confirming that they were
differentiated myoblasts. After 11 days in culture, cells
became multinucleated (Figure 1(a), right upper panel), and
the myogenin staining was strongly reduced (Figure 1(a)
right medium panel); in contrast, cells expressed prominent
MHC staining (Figure 1(a) right lower panel). Therefore, at
that time most myoblasts had fused into myotubes, showing
a serum-induced further differentiation over culturing time,
and thus for both conditions wild type and capn3-deficient
(not shown) mice. As a result, in subsequent single-cell
Ca2+ measurements myoblasts and myotubes were probed
independently as they exhibit different differentiation states.

In a second set of experiments we analysed capn3
expression in myoblasts and myotubes from normal and
capn3-deficient mice. RT-PCR was carried out with RNA
extracted from the myoblast and myotube differentiation
stages and with specific primers covering in particular the
regions of capn3 alternative splicing [4]. Only weak expres-
sion was detected on capn3-deficient cells (data not shown;
[6]) whereas it was present in normal cells at both stages.
In addition, the differentiation process in this cell culture
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Figure 1: Morphological and molecular features of skeletal muscle cells used throughout this study. (a) Phase contrast and fluorescence
micrographs of murine skeletal muscle cells in primary culture. Typical morphology of the living cells (left upper panel: myoblasts;
right upper panel: myotubes) used for calcium measurements observed by phase contrast microscopy. Circles indicate the region of drug
application and monitoring of [Ca2+]i. Immunological staining of myogenin on myoblasts (left middle panel) and myotubes (right middle
panel) was visualized by confocal microscopy using a FITC-labelled secondary antibody (green fluorescence). Myosine Heavy Chain (MHC)
was similarly observed in myoblasts (left lower panel) and myotubes (right lower panel) using a TRITC-labelled secondary antibody (red
fluorescence). Myoblasts and myotubes were obtained after 6 or 11 days in culture, respectively. (b) Detection of calpain 3-mRNA in wild
type (+/+) myoblasts and myotubes by RT-PCR. Gel electrophoresis of the RT-PCR reactions obtained using the primer pairs p94sys3,
p94sys5 and p94sys6 (see Section 2) on murine myoblast (MB) or myotube (MT) mRNA. (c) Detection of the ryanodine receptor in skeletal
muscle from normal and capn3-deficient mice. Muscle from normal (Lane 3) and capn3-deficient mice (Lane 2) were extracted and left 30
min at room temperature to allow the cleavage of RyR and were then subjected to SDS-PAGE. Human muscle was used as control (Lane1).
No difference in the cleavage pattern was observed, indicating that the partial cleavage of RyR also occurs in the absence of calpain 3 in
this biochemical assay. (d) Measurement of caspase 3 activity in wild type and capn3-deficient myoblasts. The graph displays the levels of
substrate cleavage expressed as means ± S.D. in arbitrary units. The results are based on 4 different experiments. The differences in the
median values among the two groups are greater than would be expected by chance; there is a statistically significant difference (P = 0.029),
as indicated by a Mann-Whitney Rank Sum test.

system was accompanied by a change in the expression
pattern of calpain 3 RNA isoforms with alternative splicing
forms mostly expressed in immature cells (see MB lanes in
Figure 1(b) and Table 1 for semiquantification).

During the excitation-contraction coupling phenome-
non, RyR releases Ca2+ in response to depolarization of

the plasma membrane. Previous publications reported the
cleavage of RyR by a 94 kDa thiol protease into two fragments
(375 kDa and 150 kDa fragments) [7, 15]. This cleavage
results in an enhancement of Ca2+ efflux from SR vesicles.
We examined this protein by western blot in normal and
capn3-deficient whole skeletal muscle samples (Figure 1(c)
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Table 1: Quantification of the expression of calpain 3 transcripts
in wild type myoblasts and myotubes. These data were obtained
from the gel electrophoresis of the RT-PCR reactions using the
primer pairs p94sys3, p94sys5 and p94sys6 on murine myoblast
(MB) or myotube (MT) mRNA (see Figure 1(b)). The gel and
the corresponding quantification are representative of 3 different
experiments where similar results were observed. These results have
to be taken qualitatively since the experiments were performed by
classical RT-PCR and not by quantitative RT-PCR. Numbers are
given in arbitrary units.

Primer p94sys3 p94sys5 p94sys6

Cell type MB MT MB MT MB MT

Band 1 43596 165378 155681 205283 66937 46845

Band 2 207433 89706 73219 69370 45719

Band 3 43022

Total 251029 255084 228900 274653 155678 46845

and Table 2 for semiquantification). The cleaved fragments
were obtained in both samples indicating that calpain 3 is
not necessary for cleavage in whole muscle and that it most
likely cannot be involved in the results dealing with the Ca2+

release from RyR in cultivated proliferating satellite cells.
Deficiency in calpain 3 is known to be associated with

apoptosis [5] as indicated by increases of caspase 3 activity
[16]. Analysis of the cleavage of a fluorescent substrate
specifically by caspase 3 was performed in cells at the
myoblast stage. Figure 1(d) highlights the significant raise of
caspase 3 activity in calpain 3-deficient cells in comparison to
wild type cells. Caspase 3 being a marker for apoptosis, this
result therefore suggests a probable increase of the apoptotic
rate when calpain 3 is lacking in mouse myoblasts.

3.2. Caffeine-Induced [Ca2+]i Increase in Isolated Myoblasts
and Myotubes. Caffeine, the best known agonist of ryan-
odine receptors [17], was used at 20 mM throughout the
study to ensure the complete activation of the RyRs of the
sarcoplasmic reticulum (SR) [18, 19]. [Ca2+]i release by
caffeine was tested on myoblasts and myotubes cultured from
wild type (+/+) and capn3-deficient (−/−) mice (Figure 2).
Resting [Ca2+]i levels in cell types of both +/+ and −/−mice
did not change significantly (103 ± 4 nM; n = 187). After
local caffeine application, +/+ myoblasts showed a single
and slow increase in [Ca2+]i, that peaked after 3 minutes of
caffeine application and decayed slowly, even before the caf-
feine was washed out (Figure 2(a)) presumably confirming
the presence at this stage of the Na+/Ca2+ exchanger at the
plasma membrane level [20]. The number of cells responding
to caffeine in these cell types is summarised in Figure 3(a).
Thirty-two out of 36 +/+ myoblasts showed an increase in
[Ca2+]i after the application of caffeine. No [Ca2+]i response
to caffeine was observed for repeated applications (data not
shown) even when the caffeine was quickly taken off. By
contrast, +/+ myotubes exhibited a constant, repeated and
reproducible increase in [Ca2+]i after brief (30s) and repeated
applications of caffeine (Figure 2(b)). The mean peak ampli-

Table 2: Western blot quantification: cleavage of the ryanodine
receptor in wild type and calpain 3-deficient skeletal muscles.
The gel presented in Figure 1(c) was analysed in terms of band
intensities (numbers are given in arbitrary units). The lower band is
58% of the higher band (fixed to 100%) in lane 2, and 51% in lane
3. The amount of the second band is related to small degradation
condition (time and temperature), but is always identical in the two
situations wild type and calpain 3-deficient skeletal muscles. The
blot and the corresponding quantification are representative of at
least 3 independent experiments showing no difference between the
two types of mice.

Sample 1 = human
skeletal muscle

2 = capn3 −/−
mouse skeletal

muscle

3 = wild type
mouse skeletal

muscle

Band 1 90982 69472 52878

Band 2 92773 32041 38331

Band 3 49076

Total 232831 101513 91209

tude of the [Ca2+]i response is plotted in Figure 3(b). In
contrast,−/−myoblasts failed to exhibit the [Ca2+]i-induced
response to caffeine in a huge majority of cells (Figure 2(c)
and Figure 3(a); 66 cells out of 71). A very small response
was observed in only 5 out of 71 cells (Figure 3(a)). In
contrast to +/+ myotubes, a progressive desensitization of
the [Ca2+]i response to repeated caffeine applications (3
min each) was observed in −/− myotubes (Figure 2(d)).
In addition, the peak amplitude of the responses induced
by 3 successive shots of 20 mM caffeine observed in −/−
myotubes was significantly lower than in wild-type: a 60%,
75% and 90% decrease, respectively (n = 12; Figure 3(c)
versus Figure 3(b)).

3.3. Effect of Caffeine and CPA on [Ca2+]i in Isolated Myoblasts
and Myotubes from Wild Type (+/+) and capn3-Deficient
(−/−) Mice. We then compared the effects of CPA to
those obtained with caffeine. CPA is a potent inhibitor
of the sarcoplasmic reticulum (SR) Ca2+-ATPase [21, 22]
and induces Ca2+ mobilization from internal Ca2+ stores,
preferentially depleting InsP3-sensitive stores [23]. In +/+
myoblasts CPA (10 μM) induced an increase of [Ca2+]i of
much lower amplitude (Figure 4(a), right peak) than when
induced by a prior exposure to caffeine (Figure 4(a); left
peak). Tested on +/+ myotubes, both caffeine and CPA
induced a similar [Ca2+]i increase, with a peak amplitude
significantly higher (Figure 4(b)) than the one observed
in myoblasts for both drugs (Figure 4(a)). The differences
found between the responses to caffeine and CPA in +/+
myoblasts and +/+ myotubes was found to be significant
(P < 0.05; Figures 5(a) and 5(b).

Interestingly, in capn3-deficient cells (−/−), the [Ca2+]i
responses to caffeine and CPA were quite different (Figures
4(c) and 4(d) for the parameters tested. First of all, as already
illustrated in Figure 2(c), the Ca2+ response to caffeine in
−/− myoblasts was totally absent (Figure 4(c) left trace),
and of small amplitude in −/− myotubes (Figure 4(d) right
trace). By comparison CPA induced a significant [Ca2+]i
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Figure 2: Effect of caffeine on [Ca2+]i in isolated myoblasts and myotubes. Representative traces show the typical time course of the response
to 20 mM caffeine observed in (a) wild type (+/+) myoblast; (b) wild type (+/+) myotube; (c) capn3-deficient (−/−) myoblast; (d) capn3-
deficient (−/−) myotube. The duration of drug exposure is represented (open bars).

rise in −/− myoblasts (Figure 4(c) right peak), but a much
smaller increase in −/− myotubes, even when CPA was
applied before caffeine (Figure 4(d) left peak). The peak
amplitude of the various [Ca2+]i responses was quantified
and are summarised in Figure 5.

3.4. Influence of the External Ca2+ Concentration and of
Ca2+ Channels at the Plasma Membrane on SR Ca2+ Release.
The [Ca2+]i responses induced by caffeine were also tested
in low Ca2+ EGTA-buffer to investigate the dependence
upon external Ca2+ in myotubes obtained from wild type
and capn3-deficient (−/−) mice. Indeed, the removal of

extracellular Ca2+ did not significantly affect the [Ca2+]i
responses induced by 20 mM caffeine on +/+ myotubes
(results not shown). However, a major reduction in the
[Ca2+]i response to caffeine was observed in −/− myotubes,
in the absence of extracellular Ca2+ (results not shown).

The next experimental design aimed to dissect the
functional interaction between RyR and Ca2+ channels of
the plasma membrane in myoblasts and myotubes of wild
type and capn3-deficient (−/−) mice. In this respect, we
focused our study on myotubes, because −/− myoblasts
appeared insensitive to caffeine. We subjected myotubes to
successive exposures to caffeine, in the absence or presence of
nonspecific Ca2+ channel blockers (i.e., a mixture of 100 μM
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Figure 3: Peak amplitude of [Ca2+]i response of myoblasts and myotubes to caffeine. Bar diagrams summarize the response of the cell types
shown in Figure 2. (a) myoblasts (+/+ and−/−): single application of 20 mM caffeine; (b) myotubes (+/+); (c) myotubes (−/−): 3 successive
applications of 20 mM caffeine. The number of cells pooled in a category and the total number of cells tested are given in brackets.

Cd2+ and 50 μM NiCl2). None of the Ca2+ channel blockers
affected the [Ca2+]i response induced by caffeine in +/+
myotubes (Figures 6(a) and 6(b)). In sharp contrast, Ca2+

channel blockers significantly reduced the [Ca2+]i response
induced by caffeine in −/− myotubes (Figures 6(c) and
6(d)). It is noteworthy that, at the end of the inhibition of
Ca2+ entry (Figures 6(a) and 6(c)), the baseline increased
further suggesting that there was a Ca2+ re-entry in both
types of cells. However, the relative amplitudes of the 4th
and 5th caffeine applications were still different between +/+
and −/− myotubes. Moreover, after starting the inhibition
of Ca2+ entry (Figure 6(c)), the baseline decreased further
suggesting that there was constitutive Ca2+ entry in −/−
myotubes. In addition, in other set of experiments, the effects
of various more specific blockers were examined, among
them the most important Ca2+ channel sub-type blockers,
such as nicardipine (L-type blocker), omega GVIA-N-type,
omega MVIIC/MVIIA-a P/Q type, omega-Aga-IVA (a P/Q-
type blocker), and SNX-482 (a R-type blocker). Interestingly,
only nicardipine at 800 nM significantly blocked the Ca2+

response induced by caffeine in −/− myotubes (control:

568 ± 32 nM; nicardipine: 102 ± 25 nM; n = 4; P < 0.05)
suggesting that the response could not be directly mediated
by caffeine-sensitive channels.

4. Discussion

Calpains are a family of Ca2+-dependent cysteine proteases
(for review articles, see [1–3]), the members of which are
expressed ubiquitously (calpains 1 and 2) or in a tissue-
specific way (calpain 3 is skeletal muscle specific and an
isoform of calpain 3 was found in the lens). In addition
to Ca2+ ions, the activation of ubiquitous calpains can
be modulated by association with a 30 kD small sub-unit,
or with membranes, by the autolysis of the N-terminus,
or by calpastatin, a specific inhibitor. Their function in
muscle has received increasing interest because of the finding
that the activation and concentration of the ubiquitous
calpains were found to be increased in the mouse model
of Duchenne muscular dystrophy (mdx mice). Moreover,
protein degradation was enhanced in mdx muscle [24], and
it was argued that increased degradation resulted from the
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Figure 4: Effect of caffeine and CPA on [Ca2+]i in isolated myoblasts and myotubes. Representative traces show the typical time course of the
response to 20 mM caffeine and 10 μM CPA observed in (a) wild type (+/+) myoblast; (b) wild type (+/+) myotube; (c) calpain 3-deficient
(−/−) myoblast; (d) calpain 3-deficient (−/−) myotube. The duration of exposure to caffeine (open bars) and CPA (gray-dashed bars) is
represented.

elevated Ca2+ levels existing within the dystrophic muscle.
Possible substrates of calpains are the membrane-associated
cytoskeletal proteins, the plasma membrane Ca2+-ATPase,
and the ion channel proteins. Interestingly, the Ca2+ pump
located in the plasma membrane is a preferred substrate
of calpain in erythrocytes [25]. If impaired in dystrophin-
deficient muscle, this calpain action would, in addition to
provoking an excess of Ca2+ influx, disturb an important
extrusion pathway. Calpains in normal tissue supposedly
exert regulatory roles. It is therefore assumed that in the
dystrophic process, a deficiency in one of the calpains would
result in affecting a metabolic pathway rather than muscle
proteolysis. Calpains cleave substrates at restricted locations
[3] and are unlikely to be involved in mediating major
house-keeping degradative functions. Thus, current evidence

supports a role for pathologically-high calpain activity
in muscular dystrophy through the disruption of specific
regulatory mechanisms in muscle, rather than through an
increase in nonspecific proteolysis.

In this study we have used mouse primary cultures of
skeletal muscle from normal and capn3 −/− mice recently
generated at Genethon by I. Richard’s laboratory. Capn3-
deficient mice are fully fertile and viable and show a mild
muscular dystrophy that affects a specific group of muscles.
Interestingly, affected muscles manifest a similar apoptosis-
associated perturbation of the IkappaBalpha/NF-kappaB
pathway as seen in LGMD2A patients [5] and capn3-deficient
mice [6].

The availability of primary cultures of skeletal mus-
cle cells from normal and capn3 −/− mice provides an
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Figure 5: Peak amplitude of [Ca2+]i response of myoblasts and myotubes to caffeine and CPA. Bar diagrams summarize the response of
the cell types shown in Figure 4. (a) myoblasts (+/+); (b) myotubes (+/+); (c) myoblasts (−/−): application of 20 mM caffeine followed by
10 μM CPA; (d) myotubes (−/−): 2 successive applications of 20 mM caffeine followed by 10 μM CPA. The number of cells tested is given in
brackets.

opportunity to tackle in the near future the upstream and
downstream events occurring during a pharmacologically-
induced [Ca2+]i rise in myoblasts and myotubes from normal
and capn3−/−mice. Notably, it is possible that calpain 3 acts
as a feedback regulator for calcium homeostasis in skeletal
muscle cells by exerting an action on RyR. The latter, also
known as the Ca2+ release channel of the SR, is a key protein
involved in excitation-contraction coupling. Its activity is
regulated by a 94 kDa thiol-protease of the junctional SR
membranes which specifically cleaves one site on RyR. This
cleavage results in enhanced Ca2+ efflux from SR vesicles
[7, 15].

Importantly, in our hands calpain 3 seemed not to
be necessary for cleavage in skeletal muscles in vitro. The
cleavage of RyR in the absence of calpain 3 (muscle-
specific) could be due to calpain 1 and/or 2, which are
widely expressed in all cell types. The activity of these
calpains could indeed be redundant in that case. To assess
the activity of ryanodine-sensitive internal Ca2+ stores, we
applied caffeine stimulations, caffeine being a well-known
potent RyR activator [17].

The effectiveness of caffeine in normal myotubes in
comparison to myoblasts indicates a maturation of proper
RyR signalling in culture during the fusion process. Impor-

tantly, both myoblasts and myotubes from capn3 −/− mice
displayed weaker amplitudes of the caffeine-induced [Ca2+]i
transients than in normal cells, which could indicate a
lower SR Ca2+ loading state in the KO skeletal cells, a
decreased number of RyR at the SR membrane surface, or
a decreased sensitivity of these receptors but independently
of any cleavage by calpain 3.

While CPA, a compound that depletes internal Ca2+

stores [26], evoked increases of [Ca2+]i under all conditions
tested, it appeared that those responses were weaker in
capn3 −/− myotubes in comparison to wild-type myotubes,
reinforcing the hypothesis that SR Ca2+ loading decreased
in capn3 −/− myotubes or indicating that SR Ca2+-ATPases
were less expressed or less sensitive to the blocker in KO
myotubes. The difference in CPA responses between wild-
type myoblasts and myotubes is most likely due to a change
in the size of the SR that correlates with a change in the size
of the cells during fusion in culture, myotubes having a larger
area.

Caffeine is thought to directly activate RyR at the SR
membrane, leading to the opening of this channel and the
release of Ca2+ from the SR into the cytosol, independently
of any Ca2+ influx through the plasma membrane. The fact
that low extracellular Ca2+ and blockers of LCCs abolished
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Figure 6: Effect of caffeine on [Ca2+]i in isolated myotubes in the presence of Ca2+ channel blockers (Ni2+/Cd2+). Representative traces show
the typical time course of the response to 20 mM caffeine observed in (a) wild type (+/+) myotube; (c) calpain 3-deficient (−/−) myotube,
each treated with Ni2+/Cd2+. The duration of exposure to caffeine (open bars), or 50 μM Ni2+/100 μM Cd2+ (closed bars) is represented. Bar
diagrams (b) and (d) summarize the peak amplitude of the [Ca2+]i response of myotubes to caffeine and CPA. The responses from the wild
type myotubes (+/+; b) and calpain 3-deficient myotubes (−/−; d), are shown. Fifty μM Ni2+/100 μM Cd2+ was added to the extracellular
medium prior to the second application. The number of cells tested is given in brackets.

caffeine-induced [Ca2+]i increases in −/−myotubes suggests
that RyR opening and SR Ca2+ release lead to a Ca2+

influx through LCCs solely in the KO myotubes. Since
cytosolic Ca2+ is known to negatively regulate these channels
(inactivation) and that the release from the SR is not
sufficient to evoke a depolarization enabling the opening of
LCCs [27], it is most likely that an additional channel at the
plasma membrane induces a depolarization in response to
the caffeine-evoked [Ca2+]i increases in −/−myotubes.

Finally, another possibility would be that the lack of
calpain 3 leads to a decrease of RyR sensitivity to caffeine,
probably involving a regulation of the post-translational
maturation of the receptor, and thus independently of
any functional cleavage of RyR. It is noteworthy that RyR
contains many endogenous cysteines in the cytoplasmic
domain of the protein. Hence the binding of caffeine to its

site on the cytosolic face of RyR would require an activation
of RyR by extracellular Ca2+ entry in order to induce the
proper opening of the receptor.

Taken together, the results obtained in −/− myotubes
indicate: (i) a decrease of the SR load, (ii) an alteration
of RyR signalling, (iii) an increase of LCC activity (i.e.,
constitutive Ca2+ entry), but (iv) no increase of the basal
intracellular Ca2+ concentration. As the major system of Ca2+

extrusion from the cytosol is the Na+/Ca2+ exchanger, it is
very tempting to speculate that the activity of the exchangers
could be increased (higher protein expression and/or higher
rate of ion flow) in KO myocytes to maintain the level of
Ca2+ in the cells. However, this will be the subject for another
specific investigation.

In conclusion, by using a knockout strategy, we could
induce a skeletal muscle dystrophy in mice due to the absence
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of calpain 3 and thus draw a general picture of the cellular
pathways involved in this disease. The LGMD2A dystrophy
is characterised by (i) an increase of caspase 3 activity,
(ii) a deregulation of the I{kappa}B{alpha}/NF-{kappa}B
pathway leading to apoptosis [5, 16], (iii) an increase of
membrane permeability, (iv) a decrease in the size of the
SR and v) a dysfunction of RyR signalling. Indeed, our
pharmacological study sheds more light on the mechanism
of Ca2+ remodelling in the failing skeletal muscle, and we
propose a major regulatory role for capn3 on SR Ca2+

release, probably mediated by an increased participation
of LCC in Ca2+ entry to compensate for the alteration of
SR functionality. Moreover, calpain-dependent proteolysis
might be involved not only in the regulation of RyR channels
themselves, but also in the activation by splitting of RyR
auxiliary proteins forming the RyR1 multi-protein complex.

Of interest, recent work from our group showed that not
calpain 3, but μ-calpain is important for the phenomenon
of excitation-contraction (Ca2+-induced) uncoupling in nor-
mal and capn3 −/− skeletal muscle fibres [28], suggesting
that the pattern of activities and functions of the different
calpains is quite complex and that each calpain seems to play
a very specific and defined role in the regulation of Ca2+

signalling.
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